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STATISTICAL PROPERTIES OF THE METHOD OF 
REGULARIZATION WITH PERIODIC GAUSSIAN 

REPRODUCING KERNEL 

BY YI LIN1 AND LAWRENCE D. BROWN2 

University of Wisconsin, Madison and University of Pennsylvania 

The method of regularization with the Gaussian reproducing kernel is 
popular in the machine learning literature and successful in many practical 
applications. In this paper we consider the periodic version of the Gaussian 
kernel regularization. We show in the white noise model setting, that in 
function spaces of very smooth functions, such as the infinite-order Sobolev 
space and the space of analytic functions, the method under consideration 
is asymptotically minimax; in finite-order Sobolev spaces, the method is 
rate optimal, and the efficiency in terms of constant when compared with 
the minimax estimator is reasonably high. The smoothing parameters in 
the periodic Gaussian regularization can be chosen adaptively without loss 
of asymptotic efficiency. The results derived in this paper give a partial 
explanation of the success of the Gaussian reproducing kernel in practice. 
Simulations are carried out to study the finite sample properties of the 
periodic Gaussian regularization. 

1. Introduction. The method of regularization is a popular approach for 

nonparametric function estimation. Let f be the nonparametric function to be 
estimated. The method of regularization takes the form 

(1) min[L(f, data) + ,J(f)], 
fE/ 

where L is the empirical loss, often taken to be the negative log-likelihood, and 

J(f) is the penalty functional, usually a quadratic functional corresponding to 
a norm or semi-norm of a reproducing kernel Hilbert space F. Most often the 

penalty functional is chosen so that smoother functions incur smaller penalty. The 

smoothing parameter X controls the tradeoff between minimizing the empirical 
loss and obtaining a smooth solution. For a concrete example, let us look at the 

regression model 

(2) y = f(xj)+ , j = 1,...,n, 
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where xj E R, j = 1, ..., n, are the regression inputs, yj's are the responses, 
and Sj's are independent N(0, 1) noises. In this case we may take L(f, data) = 
EJ=l (yj - f(xj))2 in the method of regularization (1). 

The reproducing kernel Hilbert space T is typically of infinite dimension. In 
many situations, including regression and generalized regression, when the penalty 
functional J (f) is a norm over X, the representer theorem [Kimeldorf and Wahba 
(1971)] guarantees that the solution to (1) over F falls in the finite-dimensional 
space spanned by {K(xj, .), j = 1,..., n}, where K(., .) is the reproducing kernel 

corresponding to J(f). See also Scholkopf, Herbrich and Smola (2001) for some 
generalizations of the representer theorem. Therefore, we can write the solution 
as f = EJ=1 cjK(xi, x). The minimization problem can then be solved in this 
finite-dimensional space. 

The smoothing spline well known in the nonparametric statistics literature is an 
example of the method of regularization. In the smoothing spline the reproducing 
kernel Hilbert space 7 is a Hilbert Sobolev space and the penalty functional J(f) 
is the norm or semi-norm of the space, such as f[f(m)(x)]2 dx. The commonly 
used cubic smoothing spline corresponds to the case m = 2. The reproducing 
kernel of the Hilbert Sobolev space was given in Wahba (1990). 

The method of regularization has also been popular in the machine learning 
literature. Examples include regularization networks and more recently, support 
vector machines. See, for example, Girosi, Jones and Poggio (1993), Smola, 
Scholkopf and Miller (1998), Wahba (1999) and Evgeniou, Pontil and Poggio 
(2000). One reproducing kernel that is particularly popular in the machine 
learning literature is the Gaussian reproducing kernel (commonly referred to as 
the Gaussian kernel in the machine learning literature, not to be confused with 
the Gaussian kernel used in kernel smoothing in the nonparametric statistics 
literature). Let G(r) = (2r)-1/2w-1 exp(-r2/(2)2)) be the density function 
of N(0, w2). The Gaussian reproducing kernel has the form G(s, t) = G(s - t). 
This is a common example of the translation invariant reproducing kernels popular 
in machine learning. It is known [Girosi, Jones and Poggio (1993) and Smola, 
Scholkopf and Muller (1998)] that the Gaussian reproducing kernel corresponds 
to the penalty functional (up to a constant) 

00o 2m /.o 

(3) Jg(f) = E 2m [f(m)(x)]2dx. 2mm: U-oo 

Smola, Scholkopf and Miller (1998) introduced the periodic Gaussian repro- 
ducing kernel for estimating 27r-periodic functions in [--, r] as the reproducing 
kernel corresponding to the penalty functional 

(00 J 2m r 

(4) J(f)= 2mm [f(m)()]2dx. 
m=0? 
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From (3) and (4) it is clear that the two reproducing kernels are closely related. The 
connection between the two reproducing kernels will be clearer when we consider 
the computation with the periodic Gaussian reproducing kernel in Section 5. 

Many researchers in machine learning have derived upper bounds of the 
generalization performance of the method of regularization with the Gaussian 
or periodic Gaussian reproducing kernels. See Williamson, Smola and Scholkopf 
(2001) and the references therein. However, while popular in the machine learning 
literature, and successful in many practical applications, the statistical asymptotic 
properties of the method of regularization with the Gaussian or periodic Gaussian 
reproducing kernels have not been studied systematically. In this paper we study 
the asymptotic properties of the method of regularization with the periodic 
Gaussian reproducing kernel in nonparametric function estimation problems and 
derive the asymptotic risk (up to constants) of the method of regularization with 
the periodic Gaussian reproducing kernel. We choose to work with the periodic 
Gaussian reproducing kernel because it allows a detailed asymptotic analysis. We 
believe the results obtained in this paper should also give insights on the statistical 
properties of the Gaussian reproducing kernel. 

Motivated by the equivalence results of Brown and Low (1996) for Gaussian 
nonparametric regression and Nussbaum (1996) for density estimation [see also 
Golubev and Nussbaum (1998) for spectral density estimation; Grama and 
Nussbaum (1997) for nonparametric generalized linear regression], we first look 
at the white noise problem 

(5) Y (t)= f(u) du + n-/2B(t), t [-r, ], 
-7r 

where B(t) is a standard Brownian motion on [-7T, r] and we observe Yn = 
(Yn (t), -7t < t < 7r). We consider the situation where the function f belongs to a 
certain function ellipsoid of the form 

00 00 

(6) , f:f(t) = Oip1(t), p02 < Q , 
?k= 1=0 1=0 

for some positive sequence {Pl, 1 = 0, 1, ...}. Here {o0(t) = (27r)-1/2, 21-1 (t) = 

r-l1/2sin(lt), 021(t) = r-1/2cos(lt)} is the classical trigonometric basis in 

L2(-r, n) and 01 = (f, /) is the corresponding Fourier coefficient, where 
(f, 0 ) = -f f (t) (t) dt denotes the usual inner product in L2(-r, Jn). 

The commonly considered Sobolev ellipsoid Hm(Q) corresponds to the 
sequence po = 1, P21-1 = P21 = 12m + 1 in (6). This is the mth order Sobolev 

space of periodic functions on [-rt, 7r]. An alternative definition of Hm (Q) is 

Hm(Q) = f E L2(-ri, r): f is 2nr-periodic, 

(7) r 
/[(t)] [f + (m)(t)]2dt < 

7rQ} 
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Therefore, the mth order Sobolev space consists of functions that possess mth 
order smoothness. The order of smoothness is determined by the rate at which 
the sequence of p's increases. In the Sobolev space case the rate is of polynomial 
order. 

Another function space that has been considered in the literature is the space 
of analytic functions. An ellipsoid of analytic functions Aa (Q) corresponds to (6) 
with the exponentially increasing sequence pi = exp(al), where a is a positive 
constant. Such a function space can be motivated by considering the Fourier series 
in complex exponentials and considering the domain in which the function is 
analytical. For details, see Johnstone (1998). The norm of this function space can 
not be expressed in terms of integrals of squared derivatives of integer order. 

We now introduce a new function space H? that can be seen as the Sobolev 
space of infinite order, 

1YiI 000 00 

H??(Q) = f: f(t) = E-0' j(t), E pj02 < Q; 
1=0 1=0 

(8) 

po 1, P21-1 = P21 = e 

where co is a positive constant, and ?'s are the classical trigonometric basis over 
(-7r, rr). Simple calculation shows that an equivalent definition of H??(Q) is 

H (Q) = E L 2(-, 7r): f is 2zr-periodic, 

mT2m 
E m!2m i[f(m )()] dx < Q. mr 2m 7r 

From this we can see that H?? can be seen as the Sobolev space of infinite order, 
and that the penalty functional Jo of the periodic Gaussian reproducing kernel as 
defined in (4) corresponds to the norm of H??(Q). 

In this paper we focus on the method of regularization with the periodic 
Gaussian penalty (4). We will refer to this method as periodic Gaussian regular- 
ization. We study the statistical properties of this method both in the situation that 
f E Hm and the situation f ? H,. 

By converting the functions into the corresponding sequence of Fourier 
coefficients, we can see that the white noise problem (5) is equivalent to the 
following Gaussian sequence model: 

(9) yl = OI , 1=0, 1 ... 

where the ol's are independent N(0, 1/n) noises and the Oi's are the Fourier 
coefficients of f. The periodic Gaussian regularization corresponds to 

00 00 

(10) min (yi - 0)2 + X E o2 
1=0 1=0 
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with pi = e12w2/2 
In Section 2 we establish the asymptotic minimax risk (up to the constant) of 

nonparametric problems in the space H? (Q), and show that the periodic Gaussian 
regularization achieves this optimal asymptotic risk. In Section 3 we study the 
asymptotic performance of the periodic Gaussian regularization in the situation 
where the underlying function to be estimated is in the Sobolev ellipsoid Hm(Q) 
with unknown m and Q, or in the analytic function ellipsoid A, (Q) with unknown 
a and Q. We show that the method under study is asymptotically minimax in 
analytic function ellipsoids. For Sobolev ellipsoids Hm (Q), the periodic Gaussian 

regularization achieves the optimal rate of convergence, and the efficiency in terms 
of the constant is reasonably high, tending to 1 as m goes to infinity. 

In Section 4 we consider choosing the smoothing parameters with the unbiased 
estimator of risk. The procedure is the well known Mallows' Cp [Mallows (1973)], 
sometimes called Mallows' CL in the literature. Li (1986, 1987) established the 
asymptotic optimality of Cp in many nonparametric function estimation methods, 
including the method of regularization. Kneip (1994) obtained oracle inequalities 
for choosing smoothing parameters with Cp in ordered linear smoothers. See also 
Cavalier, Golubev, Picard and Tsybakov (2002). These results can be used to study 
the periodic Gaussian regularization with smoothing parameters chosen by the 
unbiased risk estimator. We show that the resulting data-driven method retains 
the good theoretical properties of the periodic Gaussian regularization established 
in Sections 2 and 3. Thus, adaptive estimation is achieved for unknown order of 
smoothness by the periodic Gaussian regularization in the white noise model. 

Due to the equivalence between the white noise model and other statistical 
models, we expect the periodic Gaussian regularization to have good statistical 
properties in other situations such as regression and generalized regression. In 
fact, the equivalence results in Brown and Low (1996) show that the asymptotic 
results we obtained in Sections 2-4 for the white noise model apply to the periodic 
Gaussian regularization in the regression problem (2) with fixed equidistant 
design. In regression problems with nonequidistant design, the periodic Gaussian 
regularization in regression does not match up exactly with the periodic Gaussian 
regularization in the white noise model, and therefore our results do not translate 
directly. However, we believe the results in the white noise model still give insights 
to the regression problem with general design. In this connection, see Brown and 
Zhao (2002). 

In Section 5 we consider the computation of the periodic Gaussian regular- 
ization in regression. The computation does not require equidistant design. Some 
simulations are given in Section 6 to study the finite sample properties of the 
periodic Gaussian regularization. In particular, the effect of the joint tuning of 
the smoothing parameters is studied, and the periodic Gaussian regularization is 

compared with the periodic cubic smoothing spline on four functions of different 
orders of smoothness. The simulation suggests that the finite sample performance 
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of the periodic Gaussian regularization is comparable to that of the periodic cubic 

smoothing spline when the regression function is of moderate smoothness. In the 
case of a very smooth function, the periodic Gaussian regularization may have an 

advantage. Summary and discussion are given in Section 7. Technical proofs are 

relegated to Section 8. 

Throughout this paper the expression an - bn means that a,/bn -- 1 as n -- oo. 

2. Estimation in the Sobolev space of infinite order. In this section we 
consider the white noise problem in H? (Q). 

THEOREM 1. The asymptotic minimax risk for nonparametric function esti- 
mation in the infinite-order Sobolev ellipsoid Hj?O(Q) is 21/w-ln-'l(logn)1/2. 
That is, 

00 

inf sup E( 0i-Oi)2 - 
2x/2)-ln -(logn)1/2, 

o0 OH?(Q) 1=0 

where the infimum is over all possible estimators 0. 

Notice this asymptotic minimax risk does not depend on Q, but depends on cw. 
In the following we consider the periodic Gaussian regularization. The follow- 

ing lemma will be used several times in later proofs. 

LEMMA 1. Consider the periodic Gaussian regularization (10) in the 
white noise model. Denote the estimator by 0. We have Lvaro0 2V/2w- n-~ x 

(-log A) '/2, as n -- oo and X(n) 
-- 0. 

THEOREM 2. The periodic Gaussian regularization (10) in the white noise 
model is asymptotically minimax in the infinite-order Sobolev ellipsoid H? (Q), if 
the smoothing parameter X. satisfies 

(11) log(1A)- logn and )=o(n -(logn)1/2). 

That is, 
00 

inf sup E(0i - i)2 - 2x/2w-V n-1(logn)/2, 
A OEH~?(Q) =0 

and this asymptotic risk is achieved when (11) is satisfied. Here 0 is the method of 
regularization estimatorfrom (10) with f3 = el22/2. 

The condition (11) is satisfied if nXn is bounded away from zero and infinity, 
but is milder. For example, it is satisfied by sequences n, = Cn- (log n)a for any 
constants C > 0 and -oo < a < 1/2. The adaptive choice of . is considered in 
Section 4. 
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3. Estimation over Sobolev spaces and spaces of analytic functions. In this 
section we consider the performance of the periodic Gaussian regularization when 
the function f to be estimated in the white noise problem belongs to a Sobolev 

body Hm(Q) with unknown m and Q, or an analytic function ellipsoid A,(Q) 
with unknown a and Q. In these cases the function to be estimated does not lie in 
the function space used in the method of regularization. 

THEOREM 3. Assume f E Hm(Q) with m > 1 in the white noise model (5). 
Consider the periodic Gaussian regularization estimator 0 (10) with P21-1 = 21 = 

exp(12w2/2). We have 

inf sup E(01 -_ 0)2 (2m+ l)m-2m/(2m+l)Ql/(2m+l)n-2m/(2m+l) 
A OeHm(Q) I 

This asymptotic risk is achieved when log(l/X)/w)2 - (mn Q)2/(2m+l)/2. 

REMARK 1. The conclusion of Theorem 3 holds for noninteger m > 1. 

For the ellipsoid Aa (Q) of analytic functions, we have the following: 

THEOREM 4. Assume f E Aa(Q) in the white noise problem (5). Consider the 

periodic Gaussian regularization estimator 0 from (10) with P21-1 = P21 = e22 /2. 
We have 

inf sup E(0i -_)2 - 2n-'( 1 logn. 
A OeAa(Q) I 

This asymptotic risk is achieved when log(l/)/lw2 = (log n)2/(2a2). 

The proof of this theorem is similar to that of Theorem 3, with Pl = eal, and is 

skipped. It is known that the asymptotic minimax risk in A (Q) is 2n-la- 1 
logn; 

see Johnstone (1998). Therefore, Theorem 4 says that the periodic Gaussian 

regularization is asymptotically minimax in A (Q). 
We can study the asymptotic efficiency of the periodic Gaussian regularization 

compared with the minimax estimator for nonparametric problems in Hm (Q). We 
consider the maximum asymptotic risk over Hm(Q). We compare the minimum 
of such asymptotic risk achieved by the periodic Gaussian regularization with the 
minimax risk over Hm (Q). This indicates how close to the minimax value one can 

get with the periodic Gaussian regularization. A similar study had been carried out 

by Carter, Eagleson and Silverman (1992), who studied the efficiency of the cubic 

smoothing spline in the second-order Sobolev space. 
It is well known that the asymptotic minimax risk over Hm (Q) is 

[2m/(m + 1)]2m/(2m+l)(2m + l)l/(2m+l)Ql/(2m+l)n-2m/(2m+l) 

1729 



Y. LIN AND L. D. BROWN 

0 0 
45 d- 0 

oc _ 

0 - 0 

0 

o. _ ?_ , , ? o 

0 

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 

m m 

FIG. 1. The efficiency of the periodic Gaussian regularization method. 

This can be derived with an argument along the line of the proof of Theorem 1. 

Figure 1, left panel, gives the ratio between the asymptotic risk of the periodic 
Gaussian regularization and the minimax risk when the sample size n is kept 
to be the same. The right panel gives the efficiency of the periodic Gaussian 

regularization. The efficiency is calculated in terms of sample sizes needed to 
achieve the same risk. We can see that the efficiency goes to one when the function 
is very smooth. The lowest efficiency occurs when m = 1, and the lowest efficiency 
is 33.3%. The efficiency when m = 2 is 53.3%. 

4. Adaptive choice of the smoothing parameter. In the earlier sections 
we studied the performance of the periodic Gaussian regularization when the 

smoothing parameter X has an appropriate rate of decrease. This appropriate rate 

depends on m (or a or to) and Q, which are generally unknown in practice. In this 
section we consider the problem of choosing the smoothing parameter with data. 
We study the common approach of choosing the smoothing parameter through the 
unbiased estimator of risk (Mallows' Cp). By making use of the oracle inequalities 
developed in Kneip (1994) [see also Cavalier, Golubev, Picard and Tsybakov 
(2002)], we show that the estimator chosen by the unbiased estimator of risk has 
the same asymptotic risk as the estimator with the optimal (theoretical) smoothing 
parameter. Thus, no asymptotic efficiency is lost due to not knowing m, Q and to. 

The number co appears in the asymptotic risk of the periodic Gaussian 

regularization estimator in the function space H??(Q), but does not play an 

important role in the asymptotic risk in the function space Hm(Q), so long as 
X is suitably chosen. From (22) in the proof of Theorem 3 we can see that the 

leading terms in the asymptotic risk in Hm (Q) depend on to and X only through 
- log k/9w2. The asymptotic results suggest that tuning one of X and w may suffice. 
For finite sample size, though, it may pay to tune co as well as A. Usually there is 
a range of to that works almost equally well if X is tuned correspondingly and vice 
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versa. See the simulation in Section 6 for examples. Thus, we consider a rough 
tuning for w, just to get to a reasonable range, and a fine tuning over A. 

Formally, we take a finite number of w's: o, .... ws, and tune X. and co jointly 
over X. and wo E {[c, ... , ws}. For asymptotic consideration, a range of [0, 1] for X 

suffices, since asymptotically X should go to zero. In practice we may use a slightly 
larger range. 

The tuning is based on the unbiased estimator of risk. Writing 

l = (1 + ,18)-1 

our estimator is 

Oi = Tlyl. 

We can express the risk of our estimator as 

00 00 

E E(O - 01)2 = (l/n) E 
T/ + L(1 - Tl)22 . 

I 1=0 1=0 

Now an unbiased estimator for 02 is y2 - (1/n). Plugging in, we get that 

00 00 

(12) L[(r2 - 2r)(y2 - l/n) + (1/n)r2] = [(r2 - 2ry2 + (2/n)ri] 
1=0 1=0 

is an unbiased estimator of EI E(0l - 0)2 - 0/2. We choose A* and w* that 
minimize the unbiased risk (12), and use the corresponding periodic Gaussian 

regularization estimator 0*. Kneip (1994) studied the adaptive choice among 
ordered linear smoothers with the unbiased risk estimator. A family of ordered 
linear smoothers satisfies the condition that for any member Ol = -rl, 1 = 0, 1,..., 
of the family, we have Tl E [0, 1] V l; and for any two members of the family, Tl Yl 
and ryi, 1 = 0, 1, ... . we have either Tl > Tr Vl, or Tr > Tl V. It is easy to check 
that for any fixed w E {Col, ..., cos}, the method of regularization estimators with 

varying X form a family of ordered linear smoothers. Applying the result in Kneip 
(1994) [recast in the Gaussian sequence model setting in Cavalier, Golubev, Picard 
and Tsybakov (2002)] to our situation gives the following: 

LEMMA 2. Consider the Gaussian sequence model (9) and the periodic 
Gaussian regularization (10). Suppose A* and co minimize (12) over X c [0, 1] and 
w E {[(C, ... , Cs}, and 0* is the corresponding periodic Gaussian regularization 
estimator. Then there exist positive constants C1 and C2 such that for any 0 E 12 
and any positive constant B, we have 

(13) E(t* - 0)2 < (1 + CB-l1)min E(0i -0)2 +n-lC2B. 
1 , s / I j 

We then have the following: 
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THEOREM 5. For the periodic Gaussian regularization estimator 0* chosen 

by the unbiased estimator of risk, we have 

sup E(Ol - 0)2 - 2/2o-ln-l (logn)l/2 Vs {1,..., S}, 
O0H?(Q) I 

sup L E(0f - O)2 - (2m + l)m-2m/(2m+l) Q1/(2m+l)n-2m/(2m+1) 
OEHm(Q) I 

sup E(O* - O)2 - 2n-la-l logn. 
OeAa(Q) 1 

Therefore, the adaptive periodic Gaussian regularization estimator 0* is 

asymptotically minimax in H?O(Q) and A,(Q), and achieves the optimal rate 
in Hm (Q). The asymptotic efficiency is the same as that given in Section 3. Hence, 
the estimator adapts to any unknown order of smoothness. 

5. Computation of periodic Gaussian regularization in regression. In 
order for the periodic Gaussian regularization in regression and generalized 
regression to be practically computable, we need the form of the reproducing 
kernel corresponding to the penalty functional Jo(f), that is, the reproducing 
kernel of H? . Smola, Scholkopf and Muller (1998) gave the following expression 
for the periodic Gaussian reproducing kernel: 

00 

(14) R(s, t) = (1/e) exp(-12w2/2)cos(l(s - t)). 
1=1 

Due to the fast decay of the sequence exp(-12w2/2), it is possible to 

approximate the series (14) with finitely many terms. However, an alternative 
formula of the kernel (14) is better suited for computation. We first state a lemma 
due to Williamson, Smola and Scholkopf (2001). 

LEMMA 3. Let V(s - t) be a reproducing kernel with V: R -> R being an 
even function. Let 

00 

Vv(s)= E V(s-kL). 
k=-oo 

Then 

v2w- 002 q 2kn 2knr(s - t) 
V(s - t) = - V(0) + E -2 cos 

v ^ 
v 

1 vv 

k=where V is the Fourier transform of 
where V is the Fourier transform of V. 
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Define G??(r) = lk-o G(r - 2kn). It follows directly from Lemma 3 that 
G?(s - t) is the reproducing kernel (14) corresponding to the periodic Gaussian 
regularization. The function G? can be approximated with the finite series GJ = 

Ek=-J G(s - 2kn) for some J. In fact, we have 

0 < G(s) - Gl(s) < 2.1 x 10-20 Vs c [-r, Jr] for ) < 1. 

For co > 1, we can choose a positive integer J such that 2J + 1 > 3). 
Then 0 < G(s) - GJ(s) < 10-20 Vs E [-r, r]. Therefore, GJ(s) is an easily 
computable proxy of G?(s). 

Now consider the periodic Gaussian regularization in the regression problem (2) 
with the empirical loss being E=l (yj - f(xj))2. Here we assume xj E (-7, r), 
j = 1, ... ,n, and the regression function f is 2r -periodic. The theory of 

reproducing kernel Hilbert spaces guarantees that the solution to the method of 
regularization falls in a finite-dimensional space spanned by G??(xj, .). That is, we 
can write f(x) = E=l CjG?C(xj - x), and the penalized regression (1) becomes 

(y - Gcc)'(y - G?c) + Gc'G?cc, 

where, with little risk of confusion, we write y = (yl,..., yn)t, c = (cl, ..., c, 
and G?? is the n x n matrix (G?(xi - xj)). The solution can then be 
found to be c = (G?? + Xl)-ly. In order to compute the solution as well 
as Mallows' Cp for tuning the smoothing parameters, we use the eigenvalue- 
eigenvector decomposition G? = VDV', where D is the diagonal matrix of 
eigenvalues, and V is the orthonormal matrix of eigenvectors. Let 

(15) T = D(D + I)-1 

Then f = SY, where S = VT V'. Mallows' Cp in this context is Ily - f 2/n + 
(2/n) tr(S). Notice the computation of the periodic Gaussian regularization in 
regression does not require equidistant design. 

It is possible to leave the constant term in the regression function unpenalized, as 
is commonly done in practice with smoothing splines and Gaussian regularization. 
This is equivalent to having Bo = 0 in (10), and the asymptotic results do not 
change. The penalized regression can be written as 

n 

min (yj - (f(xj) + b))2 + XJo(f). 
f,b j=l 

In this case the theory of reproducing kernel Hilbert spaces dictates that the 
solution can be expressed as f = G?c? + be, where e = (1,..., 1)'. In the case of 
equidistant sample inputs, we can see that e is an eigenvalue of G??, since G?C is 
periodic and even. In this case the computation is very similar to the case above 
with constants penalized: one simply replaces the diagonal element of T in (15) 
corresponding to the eigenvalue e by 1, and continues the computation with the 
new T. 
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6. Simulations. We conduct some simulations to study the finite sample 
properties of the periodic Gaussian regularization in regression. Consider the 

regression problem (2) with the following four functions on [-7r, Tr]: 

fl(x) = sin 2x)(x>O), 

f2(x) = -x - n + 2(x + 7r/2)1(x>-r/2) + 2(-x + 7r/2)11(x>r/2), 

f3(x) = 1/(2 - sin(x)), 

f4(x) = 2 + sin(x) + 2cos(x) + 3 sin2(x) + 4cos3(x) + 5 sin3 (x). 

The plots of the four functions are given in Figure 2. These are all 2n -periodic 
functions. The first function has only the second order of smoothness. The second 
function has only the first order of smoothness. The third function is infinitely 
smooth. The fourth function is even smoother: its Fourier series only contains 

finitely many terms. In all of our simulations the sample size is taken to be 100. 
All simulations are done in Matlab. 
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FIG. 2. The regression functions used in the simulations. The first function has only the second 
order of smoothness. The second function has only the first order of smoothness. The third function 
is infinitely smooth. The fourth function has a Fourier series that only contains finitely many terms. 
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First we study the effect of the joint tuning of X and co. We look at the regression 
problem (2) with the first regression function fi(x). In the first simulation we 
take the sample points to be equidistant in (-r, 7r]. The scatter plot is shown 
in Figure 3, top left panel. We use the periodic Gaussian regularization to 
do the estimation for Ct = (k1/5)(1/2), = exp(-k2/5), kl = 1,..., 100, k2 = 
1, ..., 100. For each combination of co and X we calculate the solution f,, and 
the averaged squared error (1/n) Ej [fA,,(xj) - f(xj)]2. The bottom left panel 
of Figure 3 gives the corresponding contour plot of the averaged squared error. 
The x- and y-axes for the contour plot are kl and k2, which are proportional to 
Ct2 and - log X. Let the minimum of the averaged squared error be a. The levels in 
the contour plot are at 1.01a, 1.05a, 1. la, 1.2a, 1.5a, 2a, 3a, 4a, 5a, 6a. We used 
these levels to focus on the behavior of the averaged squared error around its 
minimum. It is clear that the contour levels are almost straight lines, indicating 
that the averaged squared errors are almost the same when - log X varies linearly 
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FIG. 3. The top panels are the scatter plots of the data generated from the regression model (2) 
with the regression function fi(x). Left: equidistant case. Right: nonequidistant case. The bottom 
panels are the corresponding contour plots of the averaged squared errors of the periodic Gaussian 
regularization. The x- and y-axes for the contour plots are proportional to 02 and -log , 
respectively. We can see that in both cases the contour levels are very close to straight lines. respectively. We can see that in both cases the contour levels are very close to straight lines. 
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with (o2. This agrees with what is suggested by the asymptotic results, and suggests 
that in regression problems, as long as co is fixed in a reasonable range, we can 
concentrate on the tuning of the smoothing parameter A. 

Similar to any method of regularization, the periodic Gaussian regularization 
does not depend on the x's being equidistant. The same phenomenon in the joint 
tuning of X and ac appears when the input x's are not equidistant. We run the same 
simulation with nonequidistant x's, and the corresponding scatter plot and the 
contour plot are given in the right panels of Figure 3. The nonequidistant x values 
are generated by taking the fractional part of a normal variate with mean 1/4 and 
standard deviation 1/4, and then scaling the [0, 1] interval to [-Jr, 7r]. 

We run the same experiment with the other functions, f2, f3 and f4, and the 
same observation about the joint tuning of X and co is made in these experiments. 
This supports our strategy of a rough tuning for co and a fine tuning over A. 

Next we compare the periodic Gaussian regularization with the periodic cubic 

smoothing spline for regression on the circle on the four functions in Figure 2. The 

periodic cubic smoothing spline is the solution to 

n 7r 

:(yj - f(Xj))2 + I ["(t)]2dt. --2 
j=1 

This penalty corresponds to the second-order Sobolev space, but leaves the linear 
functions unpenalized. For an introduction to the periodic cubic smoothing spline, 
see Wahba (1990) or Gu (2002). 

We fix the x's to be equidistant in (-7r, 7) in our comparison. We generate 
y's according to the regression model (2) with the four functions we consider. In 
both the periodic Gaussian regularization and the periodic cubic smoothing spline, 
the smoothing parameters are chosen according to Mallows' Cp. We search the 
minimal point of Mallows' Cp over w = 0.3k1 - 0.1, for kl = 1,...,10, and 
X = exp(-0.4k2 + 7), for k2 = 1, ..., 50, for the periodic Gaussian regularization; 
and we search over X = exp(-0.4k2 + 7), for k2 = 1, ..., 50, for the smoothing 
spline. We use the chosen smoothing parameter(s) to compute the solutions. For 
each generated dataset, we calculate the averaged squared error of the periodic 
Gaussian regularization and the periodic cubic smoothing spline. 

We run the simulation 100 times. The averaged squared errors over the 100 runs 
are summarized in Table 1. For each regression function, a two-sided paired t-test 
is performed to compare the periodic Gaussian regularization and the periodic 
cubic smoothing spline based on the 100 runs. For the first function, the p-value 
is 0.49; for the second function, the p-value is 0.06, and it seems the smoothing 
spline may perform better; for the third function, the p-value is 0.9; for the fourth 
function, the p-value is very close to 0, and the periodic Gaussian regularization 
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TABLE 1 

Averaged squared error over 100 runs, for the periodic cubic smoothing spline, the 
periodic Gaussian regularization, and the periodic Gaussian regularization with 

constant left unpenalized, on four different functions of varying 
order of smoothness 

Averaged squared error 

Regression Periodic cubic Periodic Gaussian regularization 
functions smoothing spline Constant penalized Constant unpenalized 

1 0.0711 0.0675 0.0682 
2 0.0541 0.0578 0.0582 
3 0.0457 0.0462 0.0448 
4 0.1136 0.0899 0.0899 

performed significantly better: we can see the averaged squared error of the 
periodic Gaussian regularization is 22% less than that of the periodic smoothing 
spline. 

7. Summary and discussion. In this paper we study the method of regular- 
ization with the periodic Gaussian kernel. Asymptotically, the method adapts to 
unknown order of smoothness and is efficient compared with the minimax risk 
when the underlying function is reasonably smooth. The smoothing parameters 
in the periodic Gaussian regularization can be chosen adaptively without loss of 
asymptotic efficiency. Limited experiments in the finite sample case suggest that 
the performance of the periodic Gaussian regularization is comparable to that 
of the periodic cubic smoothing spline when the underlying regression function 
is reasonably smooth, and the periodic Gaussian regularization may have some 
advantage over the periodic cubic smoothing spline when the regression function 
is very smooth. This agrees with the asymptotic analysis, since it is well known 
that the cubic smoothing spline does not adapt to high order of smoothness. 

The Gaussian reproducing kernel is commonly used in practice and has been 
successful in empirical studies. Our study on the periodic Gaussian reproducing 
kernel gives a partial explanation of the success of Gaussian reproducing kernel in 
practice, as we expect the Gaussian reproducing kernel to have similar properties to 
its periodic counterpart. When we apply the nonperiodic version of the Gaussian 
kernel to the examples in our simulation, the results are slightly inferior to the 
periodic version. This is to be expected, as the nonperiodic version does not take 
advantage of the fact that the functions in the simulation are periodic. However, 
the difference is not large. The averaged squared errors are 0.0736, 0.0679, 0.0559 
and 0.1198. 
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The penalty functional Jo in periodic Gaussian regularization corresponds to the 
norm of the infinite order Sobolev space H?. It is also possible to consider 
the method of regularization with the penalty functional being the norm of the 
space Aa of analytic functions. This penalty cannot be written in terms of 
integrals of squared derivatives of integer order, but can be written in terms 
of derivatives of fractional order. In the Gaussian sequence model setting, the 
method of regularization with the analytic function space penalty is equivalent 
to the method of regularization (10) with /B = exp(al). Similar asymptotic 
results as derived for the periodic Gaussian regularization can be derived for this 
alternative regularization: the method adapts to Sobolev space Hm with unknown 
smoothness m. It is also possible to give an explicit expression for the reproducing 
kernel. In fact, the reproducing kernel is (14) with exp(-w212/2) replaced by 
exp(-al). An equivalent form of this reproducing kernel is E??(s - t), with 

E?C(r) defined as E??(r) = 
Ek_-oo E(r - 2kr) and E(r) = a/[r(r2 + o2)] the 

Cauchy density function. This form follows from Lemma 3. Unlike the periodic 
Gaussian kernel case, the decay of E(x) is slow, and it does not seem practical to 
use the form E'?(s - t) for computation. On the other hand, it might be possible 
to calculate the reproducing kernel with the series in (14) with exp(-al). 

8. Proofs. 

PROOF OF THEOREM 1. The proof is an application of the theorem of Pinsker 

(1980). For completeness we state a form of the theorem given in Johnstone 
[(1998), Proposition 6.1 and Theorem 6.2]: 

PINSKER'S THEOREM. Consider the Gaussian sequence model (9) with the 

parameter space being the ellipsoid 0 = {O' :l a20a2 < Q} with al > 0 and 

al -- oo. Then the minimax risk R(0, n) is asymptotically equivalent to the linear 
minimax risk RL (0, n), which satisfies 

(16) RL(, n) = - 1-1 -l 

where ,u = ,I(n, Q) is determined by 

(17) - al(t-al)+= Q. n l 

In our case we have a2l = a21-1 = exp(l2ko2/4), and (17) becomes 

k 
2 exp(12c2/4){c - exp(12w2/4)} = nQ, 

I=1 
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with k = k(tt) = [2w-1 (log A)l/2], where [.] stands for the integer part. Notice 

that sums such as El1= exp(12Wc2/4) are dominated by the single leading term. 
Some calculations then give that log /t (1/2) log(n Q). Therefore, 

k = k(n) - 21/2W-l(log(n Q))1/2 

Hence, it follows from Pinsker's theorem that 

R(O, n) RL(?, n) 

I al 

nC /t + 

2 -1 _ exp(12/2/4)} 
n I= 

2-k(n) - 23/2n- 1 -l(log n)1/2 
n 

This completes the proof of Theorem 1. D 

PROOF OF LEMMA 1. Solving the minimization problem (10), we get the 

method of regularization estimator 0O = (1 + I))- 1yl . As X goes to zero, we have 

y varO = (l/n) L(1 + ,BI)-2 
/ l 

-(2/n) E(l + Xe22/w2)-2 
1=1 

-(2/n)j (l +Xex /2) 2dx 

= w n- f- (1 + eY)-2(y logX)-/2dy 
log 

= x2n-l -1 (1 + ey) -2(y log)-1/2 dy 

=- n-1 
- I 

(l+ ey)-2(y -log 3)-1/2 dy 
Jlog . 

- 0 
+ (l+ eY) -2(ylog) 

- 1/2 dy 

For the second term in the bracket, we have 

0 < ( +eY) -2(y-l 
- 

log)-1/2 (l )-/2 ( + Y)2dy. 
JO Jo 
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Now let us look at the first term in the bracket. We have, on one hand, 

I (+ eY)-2(y-log)-1/2dy (y -log )-1/2dy =2(-logX)l/2; 
Jlogh J log X 

on the other hand, 

f ( + e)-2(y -log)-1/2 dy 
log A 

r-log(-log ) 
> (1 + eY)-2(y - log ))-1/2 dy 

Jlog A 

- log(- log .) 
> (1+(- log 1) 

-2 
(y - log)-1/2dy 

J log A 

-2(- log) 1/2. 

Therefore, we have 

(1 +eY)-2(y -log )-1/2dy ~ 2(-log) 1/2 
log A 

and the conclusion of the lemma follows. D 

PROOF OF THEOREM 2. The periodic Gaussian regularization estimator is 

01 = (1 + /1)- yl. We have, for any 0 E H?(Q), 

L(Ei - 0)2 = E2 l + /1) -202 
1=0 /=0 

oo oo 

< l/4X L L02 = l/4X piO2 < 1/4XQ. 
1=0 1=0 

Hence, from Lemma 1 we have, for any 0 E H? (Q), 

00 00 

E -(0l - 01)2 = L(EOi - 0)2 + Lvar < 2V/2-ln-l(- log A)1/2 + QX/4. 
1 1=0 /=0 

The last quantity is asymptotically equivalent to the asymptotic minimax risk 

2/2w-ln-1 (- log )1/2 under (11). Therefore, under (11), the periodic Gaussian 

regularization estimator is asymptotically minimax. D 

PROOF OF THEOREM 3. The estimator is 0l = (1 + ,B1)-1yl. From Lemma 1, 
we have 

varO = (l/n) 2(1 + a)-2 - 2x/2w-n-l(-logA))l/2 
1 I 
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On the other hand, we have 

sup -(EI- 01)2 
OEHm(Q) I 

00 

= sup L(1 +X- 1/)-202 
0E Hm(Q) 1=0 

00oo 

= sup L(1x + X- 1 
)-2p-1(p02). 

0cHm(Q) 1=0 

Here P21-1 = P21 = 1 + 12m are the coefficients in the definition (6) of the Sobolev 

ellipsoid Hm (Q). Clearly, the maximum is achieved by putting all mass Q at term 1 
that maximizes (1 + A-l 1 )-2p- 1. That is, the maximum is 

(18) Q max(1 + -1l 1)-2p- 

To evaluate (18), we first find the minimizer of 

Bx(x) = [1 + X-1 exp(-x2o2/2)]2(1 + x2m) over x > 0. 

Let xo(X) be a global minimizer of B (x). It is easy to see that xo(X) := oo, since 
Bx (oc) = oo. Now let us first show that xo(X) --- o as X -- 0. We prove this with 
the elementary definition of limits. For any M > 0, we can find x > M such that 

exp[(x2 - M2)o2] > 1 + x2m. Then limx?o D(X) > 1, where 

D(X) = [X + exp(-M2w2/2)]2[R + exp(-x2w2/2)]-2(1 + X2m)-1. 

Therefore, there exists 8 > 0, such that D(X) > 1 for any X < 8. On the other 
hand, for any x < M, we have Bx(x)/Bx(X) > D(X). Therefore, for any X < 8, we 
have infx<M BX(x) > BA(x), therefore, xo(X) > M. This shows that xo(X) -> oo 
as X -- 0. 

Since xo(X) - oo, we have Bj(xo) = 0. That is, 

(19) m- 12(x2 + X-(2m-2)) = 1 + exp(x22/2) 

Since xo(X) - oo as X -> 0, we have 

(20) m-1 (02x2 , )X exp(x02w2/2), 

(21) x2w2/2 - (-logA). 

Therefore, by (19) and (20) we have 

Bx(xo) = [1 + (m-l )2(x 2 +0 (2m-2)) - 1) ]2( + 2m) 
2m 

From this and (21), we see that 

Q max(1 + /-1 P-1-)-2p-1 -Qxo2m -Q2 m2m(-log)-. 
l 0 
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Therefore, 

max EE(0i-Oi)2 
(22) Hm(Q) 

(22) 

Q2-m 2m(- logx) -m + 2x/ -n -1 (- log X)1/2 

The conclusion of the theorem then comes from simple calculations. O 

PROOF OF THEOREM 5. By (13), we have 

sup E(* -0l)2 
OEHm(Q) I 

<(1+O(B-1)) sup min E(0I -01)2 + n- O(B) 
OEH"1(Q) ,(s I 

<(1+ O(B-))min sup E(B _ O)2} + n-1O(B). 
(,(Ds E H"I(Q) I 

Similar inequalities hold for H?(Q) and A,(Q). Now take B = (logn)'/3, 
and the conclusion of the theorem follows from Theorems 1-4 and the fact that 
wCs c {(l, ...., Cs} has finitely many possibilities. O 
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